
. ~ ! :~ i

A N A R C H I T E C T U R E F O R T H E D I R E C T E X E C U T I O N O F

T H E F O R T H P R O G R A M M I N G L A N G U A G E

John R. Hayes, Martin E. Fraeman, Robert L. Williams, Thomas Zaremba

Johns Hopkins Universi ty/Applied Physics Laboratory

ABSTRACT
We have developed a simple direct execution architecture

for a 32 bi t For th microprocessor. The processor can directly
access a l inear address space of over 4 gigawords. Two
instruct ion types are defined; a subroutine call, and a user
defined microcode instruct ion. On-chip s tack•caches allow
most Forth primitives to execute in a single cycle.

1. In t roduc t ion
Th i s p a p e r describes the a rch i t ec tu re of a 32 b i t

microprocessor designed for the direct execution of For th
programs. The processor has a large uniform address space
and operates on 32 b i t quant i t ies . It also has good program
execut ion pe r fo rmance because mos t Fo r th p r imi t ive
operations are executed in one cycle. This archi tecture is
ano the r example of a Reduced Ins t ruct ion Se t Computer
(R I S C) 7. A pro to type of t he a r ch i t e c tu r e h a s been
i m p l e m e n t e d as an integrated circuit in CMOS/SOS
technology with 4pan feature sizes.

For many years our group ha s used For th to program
embedded computers, especially for spacecraft. We recently
bui l t a bit-slice board level For th processor 1 for use in the
Hopkins Ul t rav io le t Telescope (HUT) which was to have
flown on the Space Shuttle in March, 1986 (rescheduled to
June , 1989). The project descr ibed in th i s paper was
under taken to show t h a t a systems design group could cost
effectively develop and use custom VLSI circuits to enhance
system capabili t ies. A single chip For th processor could
replace the 72 in 2 circuit board used for the HUT processor
and increase performance by a factor of 5-10 while operat ing
on 32 bi t r a the r than 16 bi t numbers. Because of lack of t ime
and budget and because most of the embedded systems we
have bui l t are not available for study*, no rigorous program
based archi tec ture s tudies were performed. Consequently,
many of our archi tec tura l decisions were based on simple
experiments, experience, and intuit ion.

The paper beg ins with a b r i e f descr ipt ion of For th ,
part icular ly how the language can be tailored to a specific
application. Then three features of Forth tha t would benefi t
from hardware support are identified, and an instruct ion set
to provide th is support is defined. Next, our processor's data

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© 1 9 8 7 A C M 0 - 8 9 7 9 1 - 2 3 8 - 1 / 8 7 / 1 0 0 0 - 0 0 4 2 ,~00.75

path and how i t implements Forth 's primitives is described.
The next two sections discuss the on-chip stack cache and a
peephole optimizer. Finally, some results from our prototype
chip are described.

2. Why For th?
Why use For th in the first place? Our design group has

found For th ex t remely useful in developing embedded
systems. The ha rdware env i ronmen t of an embedded
system is usually inadequate for supporting its own software
d e v e l o p m e n t . C o n s e q u e n t l y , t h e t r a d i t i o n a l
edit-compile-debug cycle is worse because of an extra step:
edit-cross compile-download-debug. The software debug
phase is typical ly performed with logic ana lyzers and
in-circui t -emulators . This painful process is avoided by
r u n n i n g a For th in te rpre te r and incremental compiler on
the target embedded system. This is made possible by the
small size of a Forth programming support system.

Forth 's extremely simple syntax and tr ivial parser allow
i t to run in impoverished hardware environments . For th 's
lexical properties are also simple. Forth subroutines, called
words, are delimited by spaces. The words themselves can
consist of any charac ters o ther than the delimiter. This
simplicity keeps the in te rpre te r small allowing full featured
For th systems to fit comfortably in as l i t t le as 8kbytes of
m e m o r y .

Programming in Forth consists of defining new words in
t e rms of exis t ing words. The new word is incrementa l ly
compiled an d can be invoked i n t e r a c t i v e l y by the
programmer . Thus , the usual benef i t s of i n t e r p r e t e d
languages are reaped, especially simplified tes t ing and a
resul t ing higher confidence in program correctness.

Adding new words to the system is one way in which Forth
is ex tens ib le . However, more i n t e r e s t i n g forms of
extensibility, made possible by Forth 's simple syntax, allow
the language to be adapted for a specific application. Forth

* It is difficult to profile a program written for a satellite after the
satellite has been launched into a 600 mile polar orbit.

42

has two types of macros which are especially useful in this
regard. An example of how one type of macro is used to
extend the language occurs in the Forth interpreter. The
in terpre ter mus t be able to recognize and discard Forth
comments which consis t of any tex t sur rounded by
parentheses. A macro named '(' is defined (see Figure 1)
tha t scans the input stream until a closing parenthesis is
found and then discards the text. Other uses of this type of
macro, called a compiling word, can be found in the
interpreter . For instance, Forth control structure words
(begin, if, whi le , etc.) are implemented as compiling words.
The second type of macro, called a defining word 4, is used to
create new families of words where all the words in a given
family share similar properties. These macro capabilities
allow the creat ion of simple languages t ha t are more
applicable to a specific problem than a conventional general
purpose language.

A second example shows how Forth can be molded to suit
an application. The example consists of an assembler for the
PDP-11. The traditional way to implement an assembler is
to write a program that reads assembly language statements
from a data file, t ranslates the statements into object code,
and writes the results into an output file. The Forth approach
to this problem is considerably different. A different syntax
is used for the assembly language statements (see Figure 2).
For each possible PDP-11 instruction (mov, inc, etc.) a Forth
word is defined to generate the appropriate piece of object code
for tha t instruction. Similarly, for each PDP-11 addressing
mode a Forth word is wri t ten which modifies the most
recently assembled instruction to use that addressing mode.
The assembly language s ta tements have become a Forth
program tha t assembles itself. The data has become the
program! The point is not that this is the best way to write an
assembler but that Forth's flexibility allows the language to
be adapted to solve the problem at hand.

3. Instruction Set Architecture
Three features of Forth can benefit from architectural

support. The first feature is the fetch-execute cycle of Forth's
v i r tua l mach ine t h a t is emula ted in sof tware on
convent iona l processors. For th sys tems are usually
implemented using threaded code 2,8. A definition of a Forth
word consists of a list of addresses pointing to the definitions
of its component words. When a word is executed, a tiny

(A macro is defined to ignore Forth comments)
(surrounded by parentheses. The colon begins the)
(definition followed by the name of the definition.)
(CLOSEPAREN, the predefined ASCII value for a)
(closing parenthesis, is passed to a routine named)
(w o r d which scans the input stream for the closing)
(parenthesis. Word returns the address of a buffer)
(holding the text which is thrown away by drop. The)
(semicolon ends the definition and immed ia t e)
(flags it as a macro.)

hex 29 constant CLOSEPAREN
: (CLOSEPAREN word drop ; hnmediate

F igu re 1. Definition of'(' Macro

~EC notation
mov (r0)+,rl
inc (r3)
add r2,-(rl)

F i g u r e 2.

Forth notation
mov r0)+ rl
inc r3)
add r2 r l -(

PDP-11 Assembler Example

program known as the inner interpreter (not to be confused
with the outer interactive interpreter) traces the addresses,
nesting down if necessary, until a primitive word defined in
assembly language is found. Control is then transferred to
the primitive. The inner interpreter consumes 35%-50% of
the CPU time in Forth systems running on conventional
processors. Consequently, hardware support for the inner
interpreter is vital. The simplicity of Forth's primitives
makes this goal easy to achieve. Our architecture can
represent most Forth primitives in one instruction and the
inner in terpreter is simply the fetch-execute cycle of the
processor.

The second feature that benefits from architectural support
is Forth's two stack programming model. One stack, called
the return stack, holds control flow information such as
subroutine re turn addresses. The other stack, called the
parameter stack, is used for computation and argument
passing. Most of the primitive words in the Forth kernel
operate on this stack. For example, d u p is a word that
duplicates the value on the top of the stack. Another example
is + which pops two values from the stack, adds them together,
and pushes the sum on the stack. Therefore, efficient access
to two stacks is desirable. Our processor supports this feature
with two on-chip stack caches (see sections 4 and 5).

Thirdly, Forth makes heavy use of subroutines, so a very
fast call instruction is important. The single line of code
needed to implement the '(' macro in Figure i is typical of
Forth programs. It is considered good programming
practice to partition a program into many short, simple
words. Experiment shows that execution profiles of Forth
programs are dominated by subroutine calls. Table 1 shows
the dynamic execution frequencies of Forth primit ives
measured on several Forth implementat ions running a
variety of programs. The first two profiles do show high
frequencies of calls, (9, and returns, (;)% The third profile
of a much smaller program is dominated by a single loop
and so shows fewer calls and returns.

The processor has only two instruction formats (see Figure
3). The most significant bit (msb) of the 32 bit instructions
distinguishes the two formats. If the msb is zero, the
remaining 31 bits are the address of a subroutine to call. So, a
Forth definition consisting of a list of pointers into the lower
231 words of address space is a program that executes that
definition. Consequently, all programs must reside in the
bottom half of the address space.

If the msb of an instruction is one, the remainder of the
instruction is microcode that directly controls the data path of
the processor. The microcode consists of ten fields that each
control a resource in the data path. Almost all of Forth's
primitive stack manipulation and arithmetic words can be
implemented with a single microcode instruction. The
details of the microcode instructions and the data path are
discussed more thoroughly in the next section.

Microcode instruct ions that disrupt the prefetching of
instructions by doing loads or stores require two cycles to
execute. All other instructions, including call, execute in
only one cycle. Two cycle conditional b ranch and
unconditional branch instructions are implemented with a
microcode instruction that reads a 32 bit destination address

Note that there are a different number of calls (:) and returns (;)
in the middle column. [n this Forth implementation (variable)
and (constant) arc called as subroutines and have an embedded
return.

43

~y

TABLE 1. Primitive Execution Frequencies

MC68010 Metacompilation HUT DEP Flight Code 1802 Data Acquisition Code
Primitive Frequency % Primitive Frequency % Primitive Frequency %

(;) 13.9
(:) 18.0

?branch 7.8
dup 7.7

@ 6.3
(cons tant) 5.6
(variable) 5.4

(literal) 4.9
b r a n c h 3.5

swap 2.4
a n d 1 .9

! 1.9
r > 1.9
> r 1.8
+ 1.8
el 1.6

o v e r 1.6
e@ 1.5
1+ 1.3

drop 1.3
1- 1.1

c m o v e 1.0
other 10.4

(:) 17.3
@ 10.9

(constant) 9.4
(;) 7.5

wait 5.6
(literal) 5.5
?branch 4.7

r ~ (1) 4.1
s w a p 3 .8

C/loop) 2.8
-1 2.8

a n d 2.7
1 2.6

(variable) 1.8
not (o=) 1 8

drop 1.8
O< 1.8
dup 1.7
over 1.5

o r 1.4
ro t a t e 1.4

~- 1.0
other 6.3

+ 10.9
(arrays) 10.9

i 10.5
(loop) lO 2

c@ 8.1
cons tan t 6.1

- 4.8
(:) 4.4
(;) 4.4
@ 4.0

(lit8) 3.5
! 3.2

dup 3.2
? b r a n c h 2.1

s w a p 2.1
O< 2.0

j 2.0
b r a n c h 1.7

a n d 1.1
(n t i s) 1.1

r > 1.0
> r 1.0

other 1.5

msb Argumen t Action

0 address subroutine call

1 control fields user defined microcode

F igure 3. Instruction Formats

from the instruct ion stream. In fact the subroutine call
instruction could have been implemented similarly so that
only one instruction format would have been necessary at the
cost of doubling the execution time of calls. The profiling
data could be used to guide the selection of other instruction
types for future versions of the architecture. Literal , ?b r an ch
(conditional branch), and b r a n c h (unconditional branch)
are obvious candidates.

4. Processor Data Pa th
The processor has an internal 32 bit wide data path. The

da ta pa th resources include several special purpose
registers, an ar i thmet ic logic uni t (ALU), and two stack
memories. These resources communicate over a single
common bus and a short auxil iary bus. There are also
several unidirectional local communication paths between
specific resources. A block diagram of the data path is shown
in Figure 4.

Most of the data path resources communicate over the main
Bbus . The A b u s is used primarily for program counter
address calculations. The port is a multiplexer that connects
either the Abus or the Bbus to the external address/data bus.
In general, the A b u s connection is used for instruction
fetching and the Bbus connection is used for memory loads
and stores.

PARAMETER
STACK

4

RETURN
STACK

3
T

!

< AbtJ~

Bbus

Figure 4. Data Path Block Diagram

44

Two on-chip stack memories are provided to support
Forth 's two stack programming model. The current
instruction encoding permits access to the top four elements
of either stack. A mechanism is provided to allow the stacks
to overflow into main memory using the stack caching
algori thm described below. Four global User Defined
Registers (UDRs) are also included in the architecture.
Although these registers are unnecessary to support Forth,
they are useful. For instance, two UDRs are currently
dedicated to the stack caching algorithm.

The ALU performs the expected arithmetic and logic
operations. One input to the ALU is attached to the Bbus and
the other is connected to a multiplexer. The multiplexer can
connect the top of the parameter stack or the Abus to the ALU.
The stack connection is used to implement Forth's stack
operators. The Abus connection is used to allow the ALU to
increment the program counter, which consists of the
Instruction Address Register (IAR) and the Address Latch
(AL), during a time when the ALU would otherwise be idle. A
single bit temporary flag latch (FL) holds a selected ALU
condition. The ALU output goes into a single bit shifter, then
to a temporary Data Latch (DL).

The programmer views the microcode instructions as
executing in two phases. In the first phase operands are
fetched from registers, delivered to the ALU, and results are
computed into the DL and FL latches. During the second
phase a result is written into a destination register. Tables 2
and 3 show the microcode instruction fields used to control
the data path during the two phases.

TABLE 2. Phase 1 Instruction Fields

Field
Bbns

sh~/t

ALUop
6'in

Flag

Xfer

Stackop

Action Size
4 source register of Bbus

TOS, SOS, SOS, 40S
TOR, SOR, 3OR, $OR
UDRO, UDR1, UDR2, UDR3,
IAR, PSW
select shifter operation
logical shift left
logical shift right
arithmetic shift right
n o n e

ALU operat!on
carry input
Flag condition
O, Z, N, C, V, NzorV, ~C÷Z, (NtorV)+Z,
i, ~z, ~g, ~C, ~ Y, ~(gzorV),
~(~C+ Z/, -~((N~orV)÷ Z)
bus transfer
A bus--. ALI P O R T, read
Bbus-* PO R T, read
Bbu~--*AL]PORT, read
Bbus-* PO R T, write
stack operation 3
push parameter stack
pop parameter stack
push return stack
pop return stack
pop both stacks
push parameter stack, pop return stack
pop parameter stack, push return stack
nop

Tota l phase 1 bits allocated 24

8
[

4

TABLE 3. Phase 2 Instruction Fields

....... Field Action
Bsrc Bbus source register

DL, FL, PORT, TOS
Bdest Bbus destination register

TOS, SOS, 30S, 405'
TOR, SOR, #OR, 40R
UDRO, UDR1, UDR2, UDR3,
PSW, PORT, none

Post/etch execute post-fetch cycle

Total phase 2 bi ts allocated

Instruction Word Size

Size
2

31

The interpretation of the instruction fields is generally
straightforward 3 except for the Stackop and Postfetch fields.
The programmer sees the Stackop operation occurring
'magically' between phase 1 and phase 2. Thus, a
microinstruction that accesses the top of the parameter stack
in both phases is referring to two differentphysical registers
if the microinstruction also pops or pushes the stack.

The one bit Postfetch field is set when an extra instruction
fetch cycle is necessary because a memory load or store
operation prevented the normal instruction prefetch. The
postfetch cycle is also used to implement conditional
branches: In a postfetch cycle the value in FL determines the
address of the next instruction. If the FL is set, the program
counter has the address of the next instruction and if the FL
is cleared, the instruction register (IR) has the address. A
conditional branch consists of a microcode instruction that
performs a test, conditionally sets the FL a n d specifies a
postfetch cycle. During execut ion of the microcode
instruction, a 32 bit destination address is fetched from the
instruction stream into the IR as if it were a n instruction.
The postfetch cycle will either branch to the location held in
the IR or continue based on the value of FL. Load and store
instruct ions which also require a postfetch cycle must
arrange to set FL and unconditional branches must clear
FL.

The basic two phase microinstruction can be summarized
in a register transfer notation shown at the top of Table 4
where phase 1 is on the left and phase 2 is on the right. Table
4 also shows how some representative Forth primitives are
implemented. The stack operations that push or pop the
parameter stack are denoted by SP and ~P respectively.

5. Stack Caching
An overflow/underflow mechanism allows the stack to

grow larger than the space available in the on-chip memory.
The method is based on an algorithm analyzed by Hasegawa
and Shigei 5 which they call Cut-Back-K. When the on-chip
memory is full and a stack push occurs, the bottom K words of
the on-chip memory are written out to main memory. If the
on-chip memory is empty and a stack pop occurs, words are
read in from main memory. This algorithm is not directly
applicable to our architecture for two reasons. First, our
instruction encoding allows access to the top four stack
elements, so these elements must always be available in the
cache. Second, our implementation of the algorithm uses
high priority in ter rupts to handle stack overflow and
underflow, so at least one stack location must be available
for use by the interrupt service routine. However, merely by
pretending that there are five less locations available in
on-chip memory allows us to apply Hasegawa's analysis.

45

TABLE 4. User Defined Microcode for Some Typical Forth Primitives

P r i m i t i v e

Generic Act ions

d u p

o v e r

+

0 ~
@, load
!, store

?branch, i f

Action, phase 1

source op TOS -~ DL; cc --~ FL; stackop

TOS -+ DL; IP
SOS ~ DL; IP

SOS + TOS -~ DL; tP
TOS -~ DL; Z -~ FL

TOS --~ PORT,read; 1 --~ FL
TOS --~ PORT,write; tP; 1 -~ FL

TOS-~DL; Z - * F L ; tP
<target address>

Action, phase 2

source -~ des~

' DL -~ T O S

DL --~ TOS
DL --~ TOS
FL --~ TOS

PORT -~ TOS; postfetch
TOS -~ PORT; postfeteh

postfetch

Each stack cache in the current implementat ion of the
architecture consists of sixteen 32 bit words. The choice of
sixteen words was dictated almost solely by available chip
area (see Figure 7). The stack cache can be modeled as an
eleven state Markov chain. A pop will cause the system to
follow the left arrow (see Figure 5) from its current state to its
new state. Similarly, a push will cause a transition to the
right. If nei ther a push nor a pop occurs, the state remains
unchanged. There are eleven s ta tes in the model because
that is the maximum excursion that the top of stack can make
within the cache without causing an overflow or underflow.
When the cache is in state eleven and a push occurs, the
cache overflows and K cached stack words are wri t ten to
main memory. In Figure 5, K=8, and state four is entered
following an overflow. If eight more pushes occur, the cache
will overflow again.

Hasegawa and Shigei 's analys is of the Cut-Back-K
algorithm assumes that the top of the stack does a random
walk, i.e., that the probabilities of a push or a pep in a given
instruction are independent of what happened in the previous
instruction, The probability of a push is also assumed to be
equal to the probability of a pop. The analysis found that the
expected duration of the random walk the top the stack makes
before an overflow or underflow occurs isi

K (N - K)
D - (1)

K 1 - r

where
K is the cut back value
N is the number of states + 1
r is the probability that an instruction

neither pushes nor pops

D K is maximized by setting K to N/2 yielding:

2
N

D - (2)
m a x 4 (1 - r)

With a cache of sixteen words and the top four stack
elements always in the cache, the optimal K is 6. The state
d iagram in Figure 6 r ep re sen t s this variat ion of the
algorithm. This figure and the previous equation bear out
the intui t ively appeal ing notion tha t intervals between
falling off the end of the diagram are maximized by start ing
at the center of the diagram. Our current chip design uses the
K=8 version of Figure 5 instead of the optimal K=6 algorithm
because an extremely simple VLSI implementa t ion was
found for K=83:

F igure 5. Cut-Back-K Algorithm: K=8

)

Figure 6. Cut-Back-K Algorithm: K=6 (Optimal)

46

In practice, the average depth of a Forth stack varies slowly
while the actual depth experiences small, rapid variations.
The slow var ia t ion contr ibutes lit t le to a program's stack
caching overhead. However, i f the ampli tude of the rapid
o s c i l l a t i o n s is s u f f i c i e n t l y l a r g e , t h e s t a c k
underf low/overf low m e c h a n i s m will cause t h r a s h i n g
between the cache and main memory. Oscillations t ha t are
grea ter t h a n three quar te rs of the on-chip cache size will
always produce this thrashing. Also, with K=8, oscillations
with amplitudes down to one quarter of the on-chip cache size
can produce t h r a s h i n g if the init ial stack depth is a t an
inopportune value.

An exper iment was done to characterize the stack depth
behavior of a typical Forth program. A trace of the stack
depths from the f irst 1,000,000 primitives executed in the
me t acompi l a t i on b e n c h m a r k (Table 1) was fed to a
s imulat ion of the caching algorithm. The simulat ion was
parameter ized in the size of the cache, the number of i tems
initially on the stack, and the Cut-Back-K value. In addition
to caches of size 16, 32 word caches were also simulated.
Equat ion 2 above indicates t h a t the length of the random
walk is proportional to the square of the number of states in
the model, so doubling the size of the cache should reduce the
number of stack in ter rupts by at least a factor of four. For
cache sizes of 16, eight different runs were performed with
each run hav ing a different number of i tems initially on the
stack ranging from 16 to 24. This allowed observation of the
wors t and bes t case performance of the algorithm. For
caches with 32 words, sixteen runs were done.

The results are summarized in Table 5. With an on-chip
cache size of 16, the worst case performance of the stacks is
quite poor, while the best case performance is very good.

T A B L E 5. Stack Interrupt Behavior

Stack Interrupts
per lrO(}OfO00 Primitives Executed

Parameter Stack Return Stack
Algorithm Best I Worst Best I Worst

size~16, K = 8 6 28366 1019 4949
size-r- 16, K = 6 2 4831 751 2236

size~32. K=16 0 1 0 315
sizes32, K~14 0 1 0 4

Doubling the on-chip stack size to 32 reduces the worst case
behavior dramatically. This da ta indicates tha t stack sizes
of 16 are often sufficient bu t t h a t sizes of 32 are preferable.
Th i s s ingle e x p e r i m e n t is n o t conclusive and the
performance of the cache r u n n i n g real code remains to be
seen.

6. Object Code Tmprovement
The processor's data path is actually more general than the

execution model needed for Forth. For example, a For th
b ina ry opera t ion takes two operands from the stack,
performs a calculat ion on them, and pushes the resul t onto
the stack. In a gener ic b i n a r y operat ion us ing the
processor's da ta path, one operand comes from the top of the
stack bu t the other operand can come from almost any
reg~ister. In addition, the resul t can be sent almost anywhere
and most combinat ions of push ing and/or popping both
s tacks is possible. Consequent ly , i t is often possible to
execute multiple Forth primit ives with one microinstruction.
For example use of dup, over , etc. for positioning operands is
entirely overhead. If the following instruction consumes the
new top of stack value, the d u p (or ove r , etc.) can in many
cases be combined with the following instruction.

A peephole optimizer was implemented as p a r t of the
metacompiler fo r our processor to perform simple instruction
compac t ions e. A For th metacompiler is a program t h a t
produces stand-alone object code from Forth source code tha t
had previously been interpreted. Since this stand-alone code
represents a completed application program, i t is worth while
to go to the t rouble of genera t ing h igher qual i ty code.
Therefore, the optimizer is pa r t of the metacompiler and is
not used in the ordinary F o r t h in teract ive incrementa l
compilation envi ronment .

The pr imary two goals of the peephole optimizer were to
reduce the execut ion t ime an d volume of object code.
However, a t h i r d i m p o r t a n t capabil i ty emerged as the
optimizer was developed. By combining an instruction t ha t
does a push with an instruction tha t does a pop so t h a t the push
and pop cancel, t h e r e su l t i ng object code generates fewer
stack overflow/underflow in te r rup t s . Table 6 shows a
realistic example of code compaction. A code sequence tha t
t a k e s four cycles to execute l~as been converted to one t ha t
takes two cycles and a potent ia l ly cost ly push has been
avoided.

T A B L E 6. Code Compaction

over
0-~

if

d o v e r 0-~-~

if

d o v e r 0-~- if~>

tarset address>

compaction of over and O ~

SOS ~ DL; Z --~ FL; ~P FL -~ TOS
TOS --~ DL; Z ~ FL; ~P postfetch

~tar~et addrea~ >

compaction with if test

SOS ~ DL; Z ~ FL p~tfetch
~target address~>

47

7. Results
A prototype chip was implemented in MOSIS's

(discontinued) 4~m CMOS/SOS process. SOS was chosen
because of its radiation tolerance in space environments 11.
Fully static design principles were followed so that the chip
could be used reliably as a component in a spacecraft. The
design used a 7.9 x 9.2 mm MOSIS standard frame.

The logic design, layoutl and simulation of the 18,000
transistor prototype took approximately 9 man-months after
the architecture was specified. The architecture took 5
man-months to design and another 2.5 man-months were
spent porting CAD tools 9'10 to our Unix work station. The
simplicity of the instruction set and the care that went into the
design of the architecture helped produce the simple and
clean layout shown in Figure 7. Very little instruction
decoding was necessary, and the control logic of the chip
occupies less than 5% of its area. The floor plan is
dominated by the two ! 6 word stack caches.

When the prototype chips were received from MOSIS, we
discovered that a design rule violation had disastrously
affected yield. However, enough partially functional chips
were found to verify the correctness of the design. These
partially functional chips executed simple diagnostic
programs at speeds up to 1.5MHz. One chip worked well
enough, albeit at a low clock rate, to run an interactive Forth
interpreter and incremental compiler.

Despite the poor yield, we feel that the project was a success.
Working on shoestring budget, we have created a high
performance 32 bit architecture that directly executes Forth.
The initial results were sufficiently encouraging that we
have reimplemented the architecture in MOSIS's scalable
CMOS process. The design will be fabricated with 3~m
feature sizes in the summer of 1987 and should execute one
Forth primitive every 300ns.

8. Acknowledgments
The authors wish to express their gratitude to Dr. R. P.

Rich and Dr. L: C. Kohlenstein for their support and
encouragement of this work. We also wish to thank R. E.
Jenkins for his assistance in obtaining access to MOSIS and
express our appreciation to the USC/ISI MOSIS service for
fabricating the prototype circuits. This work was done under
Navy contract N00024-85:C-5301.

1.
9. References

Ballard, B. "FORTH Direct Execution Processors in the
Hopkins Ultraviolet Telescope", Journal of Forth
Applications and Research, 2,1 1984, pp. 34-47.

2. Bell, J.R. "Threaded Code", Communications of the
ACM 16,6, June, 1973, pp. 370-372.

3. Fraeman, M.E., Hayes, J.R., Williams, R.L.,
Zaremba, T. "A 32 Bit Architecture For Direct Execution
of Forth", Proc. of the Eighth FORML Conference , 1986.

4. Harris, K. "Forth Extensibility: Or How to Write a
Compiler in Twenty-Five Words Or Less", BYTE 5,8,
August, 1980, pp. 164-184.

5. Hasegawa, M., Shigei, Y. "High-Speed Top-of-Stack
Scheme for VLSI Processor: a Management Algorithm
and its Analysis", Proc. of the 12th Annual
International Symposium on Computer Architecture,
1985, pp. 48-54.

6. Hayes, J.R. "An Interpreter and Object Code Optimizer
for a~32 Bit Forth Chip", Proc. of the Eighth FORML
Conference , 1986.

7. Patterson, D.A. "Reduced Instruction Set Computers",
Communications of the ACM 28,1, January, 1985, pp.
8-21.

8. Ritter, T., Walker, G. "Varieties of Threaded Code for
Language Implementation", BYTE 5,9, September, 1980,
pp. 206-227.

9. University of California, Berkeley, "1983 VLSI Tools:
Selected Works by the Original Artists", Report No.
UCB/CSD 83/115, March, 1983.

10. University of Washington/Northwest VLSI Consortium,
"UW/NW VLSI Release 3.0".

11. Williams, R.L., Fraeman, M.E., Hayes, J.R.,
Zaremba, T. "The Development of a VLSI Forth
Microprocessor", Proc. of the Eighth FORML
Conference, 1986.

48

IR CONTROL UNIT

FLAG LOGIC

Figure 7. Photograph of Prototype Chip

49

