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ABSTRACT 
We have developed a simple direct execution architecture 

for a 32 bi t  For th  microprocessor. The processor can directly 
access a l inear  address  space of over 4 gigawords. Two 
instruct ion types are defined; a subroutine call, and a user  
defined microcode instruct ion.  On-chip s tack•caches allow 
most Forth primitives to execute in a single cycle. 

1. In t roduc t ion  
Th i s  p a p e r  describes the a rch i t ec tu re  of a 32 b i t  

microprocessor designed for the  direct execution of For th  
programs. The  processor has  a large uniform address  space 
and operates on 32 b i t  quant i t ies .  It also has  good program 
execut ion pe r fo rmance  because  mos t  Fo r th  p r imi t ive  
operations are  executed in one cycle. This archi tecture  is 
ano the r  example of a Reduced Ins t ruct ion Se t  Computer  
( R I S C )  7. A pro to type  of t he  a r ch i t e c tu r e  h a s  been  
i m p l e m e n t e d  as an integrated circuit in CMOS/SOS 
technology with 4pan feature sizes. 

For many  years  our  group ha s  used For th  to program 
embedded computers,  especially for spacecraft. We recently 
bui l t  a bit-slice board level For th  processor 1 for use in the  
Hopkins Ul t rav io le t  Telescope (HUT) which was to have  
flown on the  Space Shuttle in March, 1986 (rescheduled to 
June ,  1989). The project  descr ibed in th i s  paper  was  
under taken  to show t h a t  a systems design group could cost 
effectively develop and use custom VLSI circuits to enhance 
system capabili t ies.  A single chip For th  processor could 
replace the 72 in 2 circuit board used for the HUT processor 
and increase performance by a factor of 5-10 while operat ing 
on 32 bi t  r a the r  than  16 bi t  numbers.  Because of lack of t ime 
and budget  and  because most  of the embedded systems we 
have bui l t  are not available for study*, no rigorous program 
based archi tec ture  s tudies  were performed. Consequently,  
many  of our archi tec tura l  decisions were based on simple 
experiments,  experience, and  intuit ion.  

The  paper  beg ins  with a b r i e f  descr ipt ion of For th ,  
part icular ly how the language can be tailored to a specific 
application. Then  three features of Forth tha t  would benefi t  
from hardware  support  are identified, and an instruct ion set 
to provide th is  support  is defined. Next, our processor's data 
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path and  how i t  implements  Forth 's  primitives is described. 
The next  two sections discuss the on-chip stack cache and a 
peephole optimizer. Finally, some results from our prototype 
chip are described. 

2. Why For th?  
Why use For th  in the  first  place? Our design group has  

found For th  ex t remely  useful in developing embedded 
systems.  The ha rdware  env i ronmen t  of an  embedded 
system is usually inadequate  for supporting its own software 
d e v e l o p m e n t .  C o n s e q u e n t l y ,  t h e  t r a d i t i o n a l  
edit-compile-debug cycle is worse because of an  extra  step: 
edit-cross compile-download-debug. The software debug 
phase  is typical ly  performed with logic ana lyzers  and  
in-circui t -emulators .  This  painful  process is avoided by 
r u n n i n g  a For th  in te rpre te r  and  incremental  compiler on 
the target  embedded system. This  is made possible by the 
small size of a Forth programming support system. 

Forth 's  extremely simple syntax and tr ivial  parser  allow 
i t  to run  in impoverished hardware  environments .  For th 's  
lexical properties are also simple. Forth subroutines,  called 
words, are delimited by spaces. The words themselves can 
consist  of any  charac ters  o ther  than  the  delimiter.  This  
simplicity keeps the in te rpre te r  small allowing full featured 
For th  systems to fit comfortably in as l i t t le as 8kbytes of 
m e m o r y .  

Programming in Forth consists of defining new words in 
t e rms  of exis t ing words. The new word is incrementa l ly  
compiled an d  can be invoked  i n t e r a c t i v e l y  by the  
programmer .  Thus ,  the  usual  benef i t s  of i n t e r p r e t e d  
languages  are reaped, especially simplified tes t ing  and  a 
resul t ing higher  confidence in program correctness. 

Adding new words to the  system is one way in which Forth 
is ex tens ib le .  However,  more  i n t e r e s t i n g  forms of 
extensibility, made possible by Forth 's  simple syntax, allow 
the language to be adapted for a specific application. Forth 

* It is difficult to profile a program written for a satellite after the 
satellite has been launched into a 600 mile polar orbit. 
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has two types of macros which are especially useful in this 
regard. An example of how one type of macro is used to 
extend the language occurs in the Forth interpreter.  The 
in terpre ter  mus t  be able to recognize and discard Forth 
comments  which consis t  of any tex t  sur rounded by 
parentheses.  A macro named '(' is defined (see Figure 1) 
tha t  scans the input stream until a closing parenthesis  is 
found and then discards the text. Other uses of this type of 
macro, called a compiling word, can be found in the 
interpreter .  For instance, Forth control structure words 
(begin,  if, whi le ,  etc.) are implemented as compiling words. 
The second type of macro, called a defining word 4, is used to 
create new families of words where all the words in a given 
family share similar properties. These macro capabilities 
allow the creat ion of simple languages t ha t  are more 
applicable to a specific problem than a conventional general 
purpose language. 

A second example shows how Forth can be molded to suit 
an application. The example consists of an assembler for the 
PDP-11. The traditional way to implement an assembler is 
to write a program that  reads assembly language statements 
from a data file, t ranslates the statements into object code, 
and writes the results into an output file. The Forth approach 
to this problem is considerably different. A different syntax 
is used for the assembly language statements (see Figure 2). 
For each possible PDP-11 instruction (mov, inc, etc.) a Forth 
word is defined to generate the appropriate piece of object code 
for tha t  instruction. Similarly, for each PDP-11 addressing 
mode a Forth  word is wri t ten which modifies the most 
recently assembled instruction to use that  addressing mode. 
The assembly language s ta tements  have become a Forth 
program tha t  assembles itself. The data has become the 
program! The point is not that  this is the best way to write an 
assembler but that  Forth's flexibility allows the language to 
be adapted to solve the problem at hand. 

3. Instruction Set Architecture 
Three features  of Forth can benefit from architectural 

support. The first feature is the fetch-execute cycle of Forth's 
v i r tua l  mach ine  t h a t  is emula ted  in sof tware on 
convent iona l  processors.  For th  sys tems are usually 
implemented using threaded code 2,8. A definition of a Forth 
word consists of a list of addresses pointing to the definitions 
of its component words. When a word is executed, a tiny 

( A macro is defined to ignore Forth comments ) 
( surrounded by parentheses. The colon begins the ) 
( definition followed by the name of the definition. ) 
( CLOSEPAREN, the predefined ASCII value for a ) 
( closing parenthesis, is passed to a routine named ) 
( w o r d  which scans the input stream for the closing ) 
( parenthesis. Word  returns the address of a buffer ) 
( holding the text which is thrown away by drop.  The ) 
( semicolon ends the definition and immed ia t e  ) 
( flags it as a macro. ) 

hex  29 constant CLOSEPAREN 
: ( CLOSEPAREN word drop ; hnmediate 

F igu re  1. Definition of'( '  Macro 

~EC notation 
mov (r0)+,rl 
inc (r3) 
add r2,-(rl) 

F i g u r e  2. 

Forth notation 
mov r0 )+ rl  
inc r3 ) 
add r2 r l  -( 

PDP-11 Assembler Example 

program known as the inner interpreter (not to be confused 
with the outer interactive interpreter) traces the addresses, 
nesting down if necessary, until a primitive word defined in 
assembly language is found. Control is then transferred to 
the primitive. The inner interpreter  consumes 35%-50% of 
the CPU time in Forth systems running on conventional 
processors. Consequently, hardware support for the inner 
interpreter  is vital. The simplicity of Forth's primitives 
makes this goal easy to achieve. Our architecture can 
represent most Forth primitives in one instruction and the 
inner in terpreter  is simply the fetch-execute cycle of the 
processor. 

The second feature that  benefits from architectural support 
is Forth's two stack programming model. One stack, called 
the return stack, holds control flow information such as 
subroutine re turn  addresses. The other stack, called the 
parameter  stack, is used for computation and argument  
passing. Most of the primitive words in the Forth kernel 
operate on this  stack. For example, d u p  is a word that  
duplicates the value on the top of the stack. Another example 
is + which pops two values from the stack, adds them together, 
and pushes the sum on the stack. Therefore, efficient access 
to two stacks is desirable. Our processor supports this feature 
with two on-chip stack caches (see sections 4 and 5). 

Thirdly, Forth makes heavy use of subroutines, so a very 
fast call instruction is important.  The single line of code 
needed to implement the '(' macro in Figure i is typical of 
Forth programs.  It is considered good programming 
practice to partition a program into many short, simple 
words. Experiment shows that  execution profiles of Forth 
programs are dominated by subroutine calls. Table 1 shows 
the dynamic execution frequencies of Forth primit ives 
measured on several Forth implementat ions running  a 
variety of programs. The first two profiles do show high 
frequencies of calls, (9, and returns, (;)% The third profile 
of a much smaller program is dominated by a single loop 
and so shows fewer calls and returns. 

The processor has only two instruction formats (see Figure 
3). The most significant bit (msb) of the 32 bit instructions 
distinguishes the two formats. If the msb is zero, the 
remaining 31 bits are the address of a subroutine to call. So, a 
Forth definition consisting of a list of pointers into the lower 
231 words of address space is a program that executes that 
definition. Consequently, all programs must reside in the 
bottom half  of the address space. 

If the msb of an instruction is one, the remainder of the 
instruction is microcode that  directly controls the data path of 
the processor. The microcode consists of ten fields that  each 
control a resource in the data path. Almost all of Forth's 
primitive stack manipulation and arithmetic words can be 
implemented with a single microcode instruction.  The 
details of the microcode instructions and the data path are 
discussed more thoroughly in the next section. 

Microcode instruct ions that  disrupt  the prefetching of 
instructions by doing loads or stores require two cycles to 
execute. All other instructions, including call, execute in 
only one cycle. Two cycle conditional b ranch  and 
unconditional branch instructions are implemented with a 
microcode instruction that  reads a 32 bit destination address 

Note that there are a different number of calls (:) and returns (;) 
in the middle column. [n this Forth implementation (variable) 
and (constant) arc called as subroutines and have an embedded 
return. 
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TABLE 1. Primitive Execution Frequencies 

MC68010 Metacompilation HUT DEP Flight Code 1802 Data Acquisition Code 
Primitive Frequency % Primitive Frequency % Primitive Frequency % 

(;) 13.9 
(:) 18.0 

?branch 7.8 
dup 7.7 

@ 6.3 
(cons tant )  5.6 
(variable) 5.4 

(literal) 4.9 
b r a n c h  3.5 

swap 2.4 
a n d  1 .9  

! 1.9 
r >  1.9 
> r  1.8 
+ 1.8 
el 1.6 

o v e r  1.6 
e@ 1.5 
1+ 1.3 

drop  1.3 
1- 1.1 

c m o v e  1.0 
other 10.4 

(:) 17.3 
@ 10.9 

(constant)  9.4 
(;) 7.5 

wait  5.6 
(literal) 5.5 
?branch 4.7 

r ~  (1) 4.1 
s w a p  3 .8  

C/loop) 2.8 
-1 2.8 

a n d  2.7 
1 2.6 

(variable) 1.8 
not (o= )  1 8  

drop 1.8 
O< 1.8 
dup 1.7 
over 1.5 

o r  1.4 
ro t a t e  1.4 

~- 1.0 
other 6.3 

+ 10.9 
(arrays)  10.9 

i 10.5 
(loop) lO 2  

c@ 8.1 
cons tan t  6.1 

- 4.8 
(:) 4.4 
(;) 4.4 
@ 4.0 

(lit8) 3.5 
! 3.2 

dup 3.2 
? b r a n c h  2.1 

s w a p  2.1 
O< 2.0 

j 2.0 
b r a n c h  1.7 

a n d  1.1 
( n t i s )  1.1 

r >  1.0 
> r  1.0 

other 1.5 

msb Argumen t  Action 

0 address  subroutine call 

1 control fields user defined microcode 

F igure  3. Instruction Formats 

from the  instruct ion stream. In fact the subroutine call 
instruction could have been implemented similarly so that  
only one instruction format would have been necessary at the 
cost of doubling the execution time of calls. The profiling 
data could be used to guide the selection of other instruction 
types for future versions of the architecture. Literal ,  ?b r an ch  
(conditional branch), and b r a n c h  (unconditional branch) 
are obvious candidates. 

4. Processor  Data Pa th  
The processor has  an internal 32 bit wide data path. The 

da ta  pa th  resources  include several  special purpose 
registers,  an ar i thmet ic  logic uni t  (ALU), and two stack 
memories.  These resources communicate over a single 
common bus and a short  auxil iary bus. There are also 
several unidirectional local communication paths  between 
specific resources. A block diagram of the data path is shown 
in Figure 4. 

Most of the data path resources communicate over the main 
Bbus .  The A b u s  is used primarily for program counter 
address calculations. The port is a multiplexer that  connects 
either the Abus or the Bbus to the external address/data bus. 
In general, the A b u s  connection is used for instruction 
fetching and the Bbus  connection is used for memory loads 
and stores. 

PARAMETER 
STACK 

4 

RETURN 
STACK 

3 
T 

! 

< AbtJ~ 

Bbus 

Figure  4. Data Path Block Diagram 
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Two on-chip stack memories are provided to support 
Forth 's  two stack programming model. The current  
instruction encoding permits access to the top four elements 
of either stack. A mechanism is provided to allow the stacks 
to overflow into main memory using the stack caching 
algori thm described below. Four global User Defined 
Registers (UDRs) are also included in the architecture. 
Although these registers are unnecessary to support Forth, 
they are useful. For instance, two UDRs are currently 
dedicated to the stack caching algorithm. 

The ALU performs the expected arithmetic and logic 
operations. One input to the ALU is attached to the Bbus and 
the other is connected to a multiplexer. The multiplexer can 
connect the top of the parameter stack or the Abus to the ALU. 
The stack connection is used to implement Forth's stack 
operators. The Abus connection is used to allow the ALU to 
increment  the program counter, which consists of the 
Instruction Address Register (IAR) and the Address Latch 
(AL), during a time when the ALU would otherwise be idle. A 
single bit  temporary flag latch (FL) holds a selected ALU 
condition. The ALU output goes into a single bit shifter, then 
to a temporary Data Latch (DL). 

The programmer views the microcode instructions as 
executing in two phases. In the first phase operands are 
fetched from registers, delivered to the ALU, and results are 
computed into the DL and FL latches. During the second 
phase a result is written into a destination register. Tables 2 
and 3 show the microcode instruction fields used to control 
the data path during the two phases. 

TABLE 2. Phase 1 Instruction Fields 

Field 
Bbns 

sh~/t 

ALUop 
6'in 

Flag 

Xfer 

Stackop 

Action Size 
4 source register of Bbus 

TOS, SOS, SOS, 40S 
TOR, SOR, 3OR, $OR 
UDRO, UDR1, UDR2, UDR3, 
IAR, PSW 
select shifter operation 
logical shift left 
logical shift right 
arithmetic shift right 
n o n e  

ALU operat!on 
carry input 
Flag condition 
O, Z, N, C, V, NzorV, ~C÷Z, (NtorV)+Z, 
i, ~z, ~g, ~C, ~ Y, ~(gzorV), 
~(~C+ Z/, -~((N~orV)÷ Z) 
bus transfer 
A bus--. ALI P O R T, read 
Bbus-* PO R T, read 
Bbu~--*AL]PORT, read 
Bbus-* PO R T, write 
stack operation 3 
push parameter stack 
pop parameter stack 
push return stack 
pop return stack 
pop both stacks 
push parameter stack, pop return stack 
pop parameter stack, push return stack 
nop 

Tota l  phase  1 bits  allocated 24 

8 
[ 

4 

TABLE 3. Phase 2 Instruction Fields 

....... Field Action 
Bsrc Bbus source register 

DL, FL, PORT, TOS 
Bdest Bbus destination register 

TOS, SOS, 30S, 405' 
TOR, SOR, #OR, 40R 
UDRO, UDR1, UDR2, UDR3, 
PSW, PORT, none 

Post/etch execute post-fetch cycle 

Total  phase 2 bi ts  allocated 

Instruction Word  Size 

Size 
2 

31 

The interpretation of the instruction fields is generally 
straightforward 3 except for the Stackop and Postfetch fields. 
The programmer sees the Stackop operation occurring 
'magically' between phase 1 and phase 2. Thus, a 
microinstruction that  accesses the top of the parameter stack 
in both phases is referring to two differentphysical registers 
if the microinstruction also pops or pushes the stack. 

The one bit Postfetch field is set when an extra instruction 
fetch cycle is necessary because a memory load or store 
operation prevented the normal instruction prefetch. The 
postfetch cycle is also used to implement  conditional 
branches: In a postfetch cycle the value in FL determines the 
address of the next instruction. If the FL is set, the program 
counter has the address of the next instruction and if the FL 
is cleared, the instruction register (IR) has  the address. A 
conditional branch consists of a microcode instruction that  
performs a test, conditionally sets the FL a n d  specifies a 
postfetch cycle. During execut ion  of the microcode 
instruction, a 32 bit destination address is fetched from the 
instruction stream into the IR as if it  were a n  instruction. 
The postfetch cycle will either branch to the location held in 
the IR or continue based on the value of FL. Load and store 
instruct ions which also require a postfetch cycle must 
arrange to set FL and unconditional branches must clear 
FL. 

The basic two phase microinstruction can be summarized 
in a register transfer notation shown at the top of Table 4 
where phase 1 is on the left and phase 2 is on the right. Table 
4 also shows how some representative Forth primitives are 
implemented. The stack operations that  push or pop the 
parameter stack are denoted by SP and ~P respectively. 

5. Stack Caching 
An overflow/underflow mechanism allows the stack to 

grow larger than the space available in the on-chip memory. 
The method is based on an algorithm analyzed by Hasegawa 
and Shigei 5 which they call Cut-Back-K. When the on-chip 
memory is full and a stack push occurs, the bottom K words of 
the on-chip memory are written out to main memory. If the 
on-chip memory is empty and a stack pop occurs, words are 
read in from main memory. This algorithm is not directly 
applicable to our architecture for two reasons. First, our 
instruction encoding allows access to the top four stack 
elements, so these elements must always be available in the 
cache. Second, our implementation of the algorithm uses 
high priority in ter rupts  to handle stack overflow and 
underflow, so at least one stack location must be available 
for use by the interrupt service routine. However, merely by 
pretending that  there are five less locations available in 
on-chip memory allows us to apply Hasegawa's analysis. 
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TABLE 4. User Defined Microcode for Some Typical Forth Primitives 

P r i m i t i v e  

Generic Act ions  

d u p  

o v e r  

+ 

0 ~  
@, load 
!, store 

?branch,  i f  

Action, phase  1 

source op TOS -~ DL; cc --~ FL; stackop 

TOS -+ DL; IP 
SOS ~ DL; IP 

SOS + TOS -~ DL; tP 
TOS -~ DL; Z -~ FL 

TOS --~ PORT,read; 1 --~ FL 
TOS --~ PORT,write; tP; 1 -~ FL 

TOS-~DL;  Z - * F L ;  tP 
<target address> 

Action,  phase  2 

source -~ des~ 

' DL -~  T O S  

DL --~ TOS 
DL --~ TOS 
FL --~ TOS 

PORT -~ TOS; postfetch 
TOS -~ PORT; postfeteh 

postfetch 

Each stack cache in the current  implementat ion of the 
architecture consists of sixteen 32 bit words. The choice of 
sixteen words was dictated almost solely by available chip 
area (see Figure 7). The stack cache can be modeled as an 
eleven state Markov chain. A pop will cause the system to 
follow the left arrow (see Figure 5) from its current state to its 
new state. Similarly, a push will cause a transition to the 
right. If nei ther  a push nor a pop occurs, the state remains 
unchanged. There are eleven s ta tes  in the model because 
that  is the maximum excursion that  the top of stack can make 
within the cache without causing an overflow or underflow. 
When the cache is in state eleven and a push occurs, the 
cache overflows and K cached stack words are wri t ten to 
main memory. In Figure 5, K=8, and state four is entered 
following an overflow. If  eight more pushes occur, the cache 
will overflow again. 

Hasegawa and  Shigei 's  analys is  of the Cut-Back-K 
algorithm assumes that  the top of the stack does a random 
walk, i.e., that  the probabilities of a push or a pep in a given 
instruction are independent of what  happened in the previous 
instruction, The probability of a push is also assumed to be 
equal to the probability of a pop. The analysis found that  the 
expected duration of the random walk the top the stack makes 
before an overflow or underflow occurs isi 

K ( N - K )  
D - (1) 

K 1 - r  

where 
K is the cut back value 
N is the number of states + 1 
r is the probability that  an instruction 

neither pushes nor pops 

D K is maximized by setting K to N/2 yielding: 

2 
N 

D - (2) 
m a x  4 (1  - r )  

With a cache of sixteen words and the top four stack 
elements always in the cache, the optimal K is 6. The state 
d iagram in Figure  6 r ep re sen t s  this variat ion of the  
algorithm. This figure and the previous equation bear out 
the intui t ively appeal ing notion tha t  intervals  between 
falling off the end of the diagram are maximized by start ing 
at the center of the diagram. Our current chip design uses the 
K=8 version of Figure 5 instead of the optimal K=6 algorithm 
because an extremely simple VLSI implementa t ion was 
found for K=83: 

F igure  5. Cut-Back-K Algorithm: K=8 

) 

Figure  6. Cut-Back-K Algorithm: K=6 (Optimal) 
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In practice, the  average depth of a Forth stack varies slowly 
while the actual  depth experiences small, rapid variations. 
The slow var ia t ion contr ibutes  lit t le to a program's  stack 
caching overhead. However, i f  the ampli tude of the rapid 
o s c i l l a t i o n s  is  s u f f i c i e n t l y  l a r g e ,  t h e  s t a c k  
underf low/overf low m e c h a n i s m  will cause t h r a s h i n g  
between the  cache and main  memory. Oscillations t ha t  are 
grea ter  t h a n  three quar te rs  of the on-chip cache size will 
always produce this  thrashing.  Also, with K=8, oscillations 
with amplitudes down to one quarter  of the on-chip cache size 
can produce t h r a s h i n g  if the init ial  stack depth is a t  an 
inopportune value. 

An exper iment  was done to characterize the stack depth 
behavior  of a typical Forth program. A trace of the stack 
depths  from the  f irst  1,000,000 primitives executed in the 
me t acompi l a t i on  b e n c h m a r k  (Table 1) was  fed to a 
s imulat ion of the caching algorithm. The simulat ion was 
parameter ized in the size of the  cache, the number  of i tems 
initially on the  stack, and the  Cut-Back-K value. In addition 
to caches of size 16, 32 word caches were also simulated. 
Equat ion 2 above indicates t h a t  the length of the  random 
walk is proportional to the square of the  number  of states in 
the model, so doubling the size of the cache should reduce the 
number  of stack in ter rupts  by at  least  a factor of four. For 
cache sizes of 16, eight  different runs were performed with 
each run hav ing  a different number  of i tems initially on the 
stack ranging from 16 to 24. This allowed observation of the 
wors t  and bes t  case performance of the  algorithm. For 
caches with 32 words, sixteen runs  were done. 

The results are summarized in Table 5. With an on-chip 
cache size of 16, the worst case performance of the stacks is 
quite poor, while the best case performance is very good. 

T A B L E  5. Stack Interrupt Behavior 

Stack Interrupts 
per lrO(}OfO00 Primitives Executed 

Parameter Stack Return Stack 
Algorithm Best I Worst Best I Worst 

size~16, K = 8  6 28366 1019 4949 
size-r- 16, K = 6  2 4831 751 2236 

size~32. K=16 0 1 0 315 
sizes32, K~14  0 1 0 4 

Doubling the on-chip stack size to 32 reduces the worst case 
behavior dramatically. This  da ta  indicates tha t  stack sizes 
of 16 are often sufficient bu t  t h a t  sizes of 32 are preferable. 
Th i s  s ingle  e x p e r i m e n t  is n o t  conclusive and  the  
performance of the cache r u n n i n g  real code remains  to be 
seen. 

6. Object Code Tmprovement 
The processor's data path is actually more general than the 

execution model needed for Forth.  For example, a For th  
b ina ry  opera t ion  takes  two operands  from the  stack, 
performs a calculat ion on them,  and pushes the resul t  onto 
the  stack. In  a gener ic  b i n a r y  operat ion us ing  the  
processor's da ta  path, one operand comes from the top of the 
stack bu t  the  other operand can come from almost  any 
reg~ister. In addition, the  resul t  can be sent  almost anywhere 
and  most  combinat ions  of push ing  and/or  popping both 
s tacks is possible. Consequent ly ,  i t  is often possible to 
execute multiple Forth primit ives with one microinstruction. 
For example use of dup,  over ,  etc. for positioning operands is 
entirely overhead. If  the  following instruction consumes the 
new top of stack value, the d u p  (or ove r ,  etc.) can in many 
cases be combined with the following instruction. 

A peephole optimizer  was implemented  as p a r t  of the  
metacompiler fo r  our processor to perform simple instruction 
compac t ions  e. A For th  metacompiler  is a program t h a t  
produces stand-alone object code from Forth source code tha t  
had  previously been interpreted. Since this  stand-alone code 
represents a completed application program, i t  is worth while 
to go to the  t rouble  of genera t ing  h igher  qual i ty  code. 
Therefore, the  optimizer is pa r t  of the  metacompiler and is 
not used in the  ordinary F o r t h  in teract ive  incrementa l  
compilation envi ronment .  

The pr imary two goals of the  peephole optimizer were to 
reduce the  execut ion t ime  an d  volume of object code. 
However, a t h i r d  i m p o r t a n t  capabil i ty  emerged as the 
optimizer was developed. By combining an instruction t ha t  
does a push with an instruction tha t  does a pop so t h a t  the push 
and pop cancel, t h e  r e su l t i ng  object code generates  fewer 
stack overflow/underflow in te r rup t s .  Table 6 shows a 
realistic example of code compaction. A code sequence tha t  
t a k e s  four cycles to execute l~as been converted to one t ha t  
takes  two cycles and  a potent ia l ly  cost ly push  has  been 
avoided. 

T A B L E  6. Code Compaction 

over  
0-~  

if  

d o v e r  0-~-~ 

if  

d o v e r  0-~- if~> 

tarset address> 

compaction of over  and O ~  

SOS ~ DL; Z --~ FL; ~P FL -~ TOS 
TOS --~ DL; Z ~ FL; ~P postfetch 

~tar~et  addrea~ > 

compaction with if test 

SOS ~ DL; Z ~ FL p~tfetch 
~target  address~> 
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7. Results 
A prototype chip was implemented in MOSIS's 

(discontinued) 4~m CMOS/SOS process. SOS was chosen 
because of its radiation tolerance in space environments 11. 
Fully static design principles were followed so that the chip 
could be used reliably as a component in a spacecraft. The 
design used a 7.9 x 9.2 mm MOSIS standard frame. 

The logic design, layoutl and simulation of the 18,000 
transistor prototype took approximately 9 man-months after 
the architecture was specified. The architecture took 5 
man-months to design and another 2.5 man-months were 
spent porting CAD tools 9'10 to our Unix work station. The 
simplicity of the instruction set and the care that went into the 
design of the architecture helped produce the simple and 
clean layout shown in Figure 7. Very little instruction 
decoding was necessary, and the control logic of the chip 
occupies less than 5% of its area. The floor plan is 
dominated by the two ! 6 word stack caches. 

When the prototype chips were received from MOSIS, we 
discovered that  a design rule violation had disastrously 
affected yield. However, enough partially functional chips 
were found to verify the correctness of the design. These 
partially functional chips executed simple diagnostic 
programs at speeds up to 1.5MHz. One chip worked well 
enough, albeit at a low clock rate, to run an interactive Forth 
interpreter and incremental compiler. 

Despite the poor yield, we feel that the project was a success. 
Working on shoestring budget, we have created a high 
performance 32 bit architecture that directly executes Forth. 
The initial results were sufficiently encouraging that we 
have reimplemented the architecture in MOSIS's scalable 
CMOS process. The design will be fabricated with 3~m 
feature sizes in the summer of 1987 and should execute one 
Forth primitive every 300ns. 
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