
SUSAN C. LEE and JOHN R. HAYES

DEVELOPMENT OF A FORTH LANGUAGE DIRECTED
PROCESSOR USING VERY LARGE SCALE
INTEGRATED CIRCUITRY

A 32-bit microprocessor has been developed for use in embedded computer systems. It supports an
interactive programming environment on an embedded computer while providing the performance of
compiled languages. The microprocessor hardware was designed to execute the Forth programming lan­
guage directly.

INTRODUCTION
The Applied Physics Laboratory is heavily involved

in the development of embedded computer systems. An
embedded computer is a special-purpose computer resid­
ing in and controlling a piece of hardware such as a mis­
sile or telescope. One characteristic of an embedded
system is the expense of software development. The
hardware environment of an embedded system is usually
inadequate to support its own software development,
and an extra step must be added to the traditional
edit! compile/ debug cycle: the software is edited and
cross-complied on a general-purpose computer and then
downloaded to the target computer for debugging, which
usually must be done with logic analyzers and in-circuit
emulators. As the computational sophistication of
embedded processors increases, the effectiveness of those
techniques diminishes and the software development time
increases.

The availability of new tools to support the quick de­
velopment of custom very large scale integrated (VLSI)

circuit chips suggested an alternative approach to the
problem. We used Silicon Compiler Systems' Genesil sili­
con compiler to explore variations on a 32-bit architec­
ture to implement the Forth language directly. Forth was
chosen because of its excellence as an embedded-system
development language. Since it is extremely small, it can
be run on the target system, eliminating cross-compila­
tion and downloading. The interactive nature of Forth
allows debugging techniques, such as interrogating vari­
ables and checking program flow, to be used on the tar­
get system without recourse to in-circuit emulators and
logic analyzers. Although embedded systems have been
developed with Forth using commercial processors, the
mismatch between the processor architecture and the
Forth language causes 351170 to 50% of the processor's
time to be wasted in interpretation overhead. By tailor­
ing our architecture directly to Forth, we can achieve
significant improvements in processing speed. A 32-bit
architecture was chosen to allow a large uniform address
space.

A key feature of our approach was the use of the
Genesil silicon compiler to implement the processor ar-

216

chitecture as a VLSI circuit chip. The compiler allowed
us to create candidate implementations and find their
speed, size, and power requirements quickly. It also
provided independence from implementation technolo­
gy. The design is specified at a high level and can be
compiled for a large number of possible silicon process­
ing technologies and fabrication lines. As new fabrica­
tion processes are invented, they can be added to the
compiler system, and the design can be recompiled.

The processor is being designed into ground support
equipment for the Ocean Topography Experiment and
Navy Radar Altimeter Program altimeters. It is also be­
ing used as the flight processor for a magnetometer ex­
periment on Freja, a Swedish satellite. The processor has
been licensed to a commercial vendor (Silicon Com­
posers, Inc., Palo Alto, Calif.) and is being marketed
under the name scn.

IMPLEMENTING FORTH IN HARDWARE
Forth is an interactive, interpreted language; state­

ments typed on the keyboard are translated into machine
language by a program called the interpreter and are ex­
ecuted immediately. A Forth system can be used as a
kind of calculator by typing statements like "2 + 2"
in Forth syntax on the keyboard; the Forth interpreter
translates the typed statement, executes it, and prints the
answer on the terminal. For more complex problems,
programs can be entered from the keyboard and then
executed by typing their names and arguments.

Interpreted languages have an advantage over com­
piled languages in that the ability to test and debug pro­
grams interactively shortens the development cycle time.
This is especially true with the Forth language, whose
simple syntax allows it to be extended uniquely for each
application. Unfortunately, because of the need for run­
time interpretation, the execution speed of Forth on con­
ventional computers suffers compared with that of com­
piled languages. Forth-oriented processor chips, by
treating Forth as object code, eliminate the performance
penalty of run-time interpretation. Consequently, inter­
active Forth programs running on the SC32 execute just

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

as fast as equivalent compiled programs on conventional
microprocessors.

Forth uses a two-stack programming model: the pa­
rameter stack, which passes arguments to functions, and
a control flow stack, which primarily holds subroutine
return addresses and is called the return stack. Most
Forth primitives (built-in functions like + and -) take
operands from one or both stacks, push or pop the
stacks (increment or decrement the stack pointers), and
return a result to one of the stacks. For example, 2 +
3 is calculated in Forth by pushing 2 and 3 onto the pa­
rameter stack and executing + , which adds the fIrst two
stack elements and replaces them with the answer 5.

Forth is implemented on traditional processors using
the approach shown in Figure 1. Because of the mis­
match between Forth's stack model and the native pro­
cessor, a layer of run-time interpretation is necessary.
A tiny assembly language program called the inner (or
address) interpreter is written for the bare processor.
Forth's primitive stack operators, also written in assem­
bly language, are implemented in the kernel layer. The
top layer of a Forth system, the interactive outer inter­
preter, is written in Forth.

The Forth inner interpreter program on traditional
processors uses a technique called threaded code. 1 The
defInitions of all high-level (nonprimitive) programs con­
sist of a list of addresses of the defInitions of the pro­
gram's constituents (sometimes called threads, hence the
term threaded code). The defInitions of Forth primitives
are in the traditional processor's assembly language.
When a high-level program is executed, the inner inter­
preter program traces through the list of addresses. Each
time the inner interpreter encounters an address in the
list, it pushes the return address on the return stack and
jumps to the address it found. If there is another ad­
dress at that location, the process is repeated. The inner
interpreter program nests down as deeply as necessary
until a primitive operation dermed in assembly language
is found, and the assembly language is executed. The
inner intepreter program then "threads" its way back
to the starting point using the return addresses saved on
the return stack. Not surprisingly, in Forth systems im­
plemented on traditional processors, 350,70 to 50% of the
system's time is consumed by the inner interpreter.

The SC32 eliminates this run-time overhead by
eliminating the inner interpreter. The address of a primi­
tive is replaced with the actual object code for the primi­
tive. The addresses of other high-level routines are
replaced with subroutine calls. At run time, a list of SC32

instructions is traced instead of a list of addresses. The
inner interpreter has become the fetch-execute cycle of
the processor.

Readers familiar with advanced Forth implementation
techniques will realize that this scheme is "subroutine
threaded code with in-line expansion." Theoretically,
nothing precludes using this technique on conventional
processors, but the mismatch between Forth and typi­
cal instruction sets would cause Forth programs to be­
come much larger. For example, suppose several
instructions are needed to implement the Forth stack
primitive "dup" on a given processor. Each time dup

f ohns Hopkins A PL Technical Digest, Volume 10, N umber 3 (1989)

Outer interpreter

Kernel layer

Inner interpreter

Processor

Conventional hardware

SC32 hardware

Figure 1. Hardware/software boundaries of the Forth virtual
machine on conventional processors and on the SC32.

is required in a program, several instructions must be
stored instead of the single address needed for threaded
systems. The resulting object code could be signifIcant­
ly bigger than the size of a thread. The instruction set
of the SC32 has been designed so that almost all Forth
primitives are implemented with one, single-word instruc­
tion, so the resulting code is as small as that produced
by a threaded system.

We gained much experience and insight into Forth­
oriented architectures during the design of the SC32'S

predecessors, the Forth Reduced Instruction Set Com­
puters 1 and 2. 2-4 Many elements of the earlier architec­
tures are clearly visible in the SC32. It is an improvement
over previous designs with more effIcient load, store, liter­
al, and branching instructions; better support for mul­
tiplication and division; and a better approach to stack
caching.

The SC32 instruction set was explicitly designed to im­
plement Forth. Each instruction executes in one cycle
except for memory loads and stores, which require two
each. Most of Forth's primitive operations can be rep­
resented with one instruction. For example, Forth's bi­
nary (two-operand) arithmetic operations, such as + and
- , are single instructions and execute in one cycle. Bi­
nary logic operations like and, or, and xor and binary
comparison operators like =, <, and > also execute
in one cycle. In fact, any possible Boolean function of
two variables is possible. The SC32 also has many single­
cycle unary (single-operand) comparison operators and
arithmetic instructions, such as increment, decrement,
test for zero, and test for negative.

An SC32 instruction can access the top four items on
either the parameter stack or the return stack, thereby
allowing single-cycle implementation of many Forth
stack manipulation operators (e.g., duplicate the top item
on the stack, drop the top item on the stack, or transfer
an item from the parameter to the return stack). This
also provides for easy use of two sets of do loop indices.

The SC32 instruction set is more general than Forth's
pure stack virtual machine, and sequences of more than
one Forth primitive can frequently be implemented with
one instruction. Arithmetic and comparison operators
can often be combined with preceding stack manipUla­
tion operations. For example, over over = is a com­
monly used sequence of Forth primitives that copies the

217

Lee and Hayes

top two elements on the stack and checks them for equal­
ity; this sequence of three primitives can be combined
into a single SC32 instruction.

The combination of multiple Forth primitives into one
instruction is especially useful with the SC32'S load and
store instructions, which provide a single, powerful ad­
dressing mode that covers the most common array and
data-structure access operations. Fetching a variable at
memory location 134 or fetching the eighth cell of a data
structure (both require multiple Forth primitives) can be
done with one SC32 instruction. Forth's load operator
(written @ in Forth) is simply a special case of the SC32

general-purpose load instruction. A Forth store instruc­
tion (! in Forth) actually takes two instructions: one to
do the store and another to clean up the stack; howev­
er, the stack cleanup can frequently be folded into a fol­
lowing instruction. The SC32 Forth compiler contains a
"peephole optimizer," logic that searches for Forth
primitive sequences that can be combined into a single
SC32 instruction. Such optimization results in significantly
faster execution.

The SC32 has single-cycle call, branch, and conditional
branch instructions. The call and branch instructions
directly implement Forth's subroutine nesting operation
and branch operation. Forth's if, while, and until oper­
ations are implemented with two instruttions: one to test
the value on top of the parameter stack followed by a
conditional branch. The test frequently can be combined
with preceding operations, resulting in two-cycle test and
branch operations. Similarly, Forth-83's loop and + loop
(increment counter and loop) operations can be done in
two cycles.

The SC32 also has fast literal, quick return, and mul­
tiply and divide step instructions. The fast literal allows
a 16-bit literal value between 0 and 65,535 to be pushed
on the stack in one cycle. The quick return provides a
way to return from a subroutine in zero time. The mul­
tiply and divide steps can be used to create efficient mul­
tiply and divide operations.

One of the most important considerations in the de­
sign of a Forth processor is the delivery of stack oper­
ands to the processor. A consequence of executing one
instruction every cycle is the need to fetch a new instruc­
tion every cycle. No spare bandwidth is left in the
processor-to-memory port for fetching stack data. Our
solution is stack caching: the top portion of each stack
is buffered on chip. The remainder of each stack is in
the same memory as the instructions and data. Special
stack-cache hardware gives the programmer the illusion
of having arbitrarily large on-chip stacks.

As the stack moves up and down within the on-chip
stack cache, the cache occasionally overflows or under­
flows. On overflow, instruction execution is suspended
for two cycles while a value is moved from the stack
cache to main memory. Underflow is handled similar-
1y. The overhead of managing the stack cache is small:
less than 1 % of the processor's time is spent on cache
management for typical Forth programs, a small price
to pay for its advantages. Since the stacks are kept in
the same address space as the instructions and data, only
one address/data bus is needed to access them, result-

218

ing in an easily used 84-pin package. It also allows a
stack to grow potentially as large as the address space
of the processor (or 4,294,967,295 cells). Finally, since
instructions, data, and stacks are in the same address
space, they can all be kept in the same memory chips.

MICROARCHITECTURE
Figure 2 is a diagram of a data path of the SC32. A

data-path diagram depicts the microarchitecture of a pro­
cessor, that is, the connectivity of the data handling and
storage elements that are visible to the programmer.
Forth's two-stack programming model is supported by
two stack caches in the data path. The parameter and
return stack caches consist of sixteen 32-bit registers each.
Both caches have two read ports and one write port. The
instruction set allows explicit programmer access to the
top four locations of either stack. Cache overflow and
underflow are handled transparently to the programmer.
Forth's heavy use of subroutines is also directly support­
ed. The instruction set and the arrangement of the data
path allow subroutines to be called in one cycle and some
returns to occur in zero cycles.

In addition to the stack caches there are four global
utility registers called user-defmed registers (UDR'S). Two
of these registers are dedicated to the stack-caching al­
gorithm, but the other two may be used as a system
designer sees fit, for instance, to implement an additional
stack or a frame pointer for a traditional language such
as C.

The arithmetic logic unit (ALU) provides the usual logic
and arithmetic functions. A single-bit left shifter on the
input side of the ALU and single-bit right shifter on the
output are available for multiplication and division steps.
A single condition code flag (FL) is provided. The flag
can be loaded with either the shift-out bit from one of
the shifters or with anyone of 16 ALU conditions. Sub­
sequently, the flag can control a conditional branch, be
fed into the ALU'S carry input for doing multiprecision
arithmetic, or be read onto a bus yielding a 32-bit 0 or
- 1 truth value. The zero register is read-only and al­
ways returns the value zero. It is useful for constructing
literals and addresses for loads and stores. The program
counter (PC) register keeps track of the next instruction
to be executed. There is also a processor status word (not
shown in Fig. 2) that contains the state of the interrupt
system and stack caches.

Three global buses provide communication between
the resources described above. At the beginning of the
execution of an instruction, B-bus delivers an operand
to the ALU from a register resource (stacks, utility
registers, zero register, etc.). The other ALU operand ar­
rives on the T -bus and is always either the top of the
parameter stack or a literal value from the instruction
word. After the ALU operates, the result is sent to a des­
tination register via the B-bus. The B-bus is connected
to the off-chip data bus when doing load or store in­
structions. The A-bus addresses the external world. Nor­
mally, the program counter is driven onto the A-bus to
fetch the next instruction. The top of the return stack
can also drive the A-bus so that a return from a subrou­
tine call can occur concurrently with the execution of

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

T-bus

Parameter FRS T
stack 0 0 0 0
cache S S S S

ALU
A

B-bus

A Forth Language Directed Processor Using VLSI Circuitry

Return
stack
cache

A-bus

FRS T
o 0 0 0
R R R R

FOS - Forth on stack TOS _ Top of the stack
ROS = Third on stack FOR - Forth on rerurn stack
SOS - Second on stack ROR - Third on rerurn stack

SOR - Second on rerurn stack
TOR - Top of return stack
ALU - Arithmetic logic unit

FL - Flag
UDR - User-defined register
PC- Program counter

Figure 2. Data-path microarchitecture of the SC32.

many instructions. During load/store instructions, the
ALU calculates an address that is subsequently driven
onto the A-bus. Finally, The UDR'S may also drive the '
A-bus during stack-cache management operations.

Although it is not shown in the figure, there is a path
from the instruction register to the A-bus for branch or
call instructions.

INSTRUCTION SET ARCHITECTURE
In keeping with the philosophy of the Reduced In­

struction Set Computer, the SC32 instruction set has only
eight instructions: three control flow instructions, four
load/store instructions, and a single microcode instruc­
tion. Every instruction is encoded in a single 32-bit word,
so that only a single cycle is needed to fetch any instruc­
tion. Each of the three instruction categories has a differ­
ent fonnat, shown in Figure 3. The three most significant
bits of the instruction determine its type and the interpre­
tation of the remaining 29 bits.

The three types of control flow instructions are call,
branch, and conditional branch. The conditional branch
is taken if the flag (set by a previous instruction) is O.
As shown in Figure 3, the subroutine address or branch
destination is an absolute address embedded in the in­
struction. Embedding the destination in the instruction
allows control flow to change in a single cycle, but it
limits the program address space to 229 words.

Figure 3 shows that the upper 16 bits of the micro
and load/store instructions have the same format. In
both, placing a 4-bit code into the Rl field selects one
of the registers on the B-bus as the source for an ALU

operation. The 4-bit code in the R2 field selects one of
the registers on the B-bus as the destination register for
the result. The code placed in the stack control field
selects any combination of "pushing" and "popping"
the parameter and return stacks. Finally, the "next" field
determines whether the incremented program counter or
the top of the return stack is used to provide the ad­
dress of the next instruction.

The single SC32 microinstruction is the workhorse of
the processor since it is used to implement most of

Johns Hopkins A PL Technical Digest, Volume 10, Number 3 (1989)

Forth's primitive operations. All microinstructions con­
sist of an ALU operation perfonned on data selected by
the Rl field and the top of the parameter stack, with
the result stored in the register selected by the R2 field .
As shown in Figure 3, the low 16 bits of the instruction
word are used as the ALU field, to select the ALU opera­
tion performed. For example, the Forth operation +
adds the two top stack elements and replaces them with
their sum. The operation is encoded in a microinstruc­
tion by placing the codes for "second on stack" in Rl,
the "top of the stack" in R2, "+ " in the ALU opera­
tion field, and "pop the parameter stack" in the stack
field. The execution of the instruction then performs ad­
dition on the top of the stack (by definition) and the
Rl register (second on stack), pops the parameter stack
(throwing away the old top of the stack), and writes the
result of the addition into the current top of the stack
location (i.e., over the old second on stack value). The
ALU field has two formats: one for doing arithmetic and
logic operations, and one for doing shift, multiply, and
divide steps, selected by the format select field.

Control flow category

Load/store category

Microcode instruction category

Destination address
(29 bits)

ALU control
(16 bits)

Figure 3. Thirty-two-bit instruction word formats for the SC32.
ALU = arithmetic logic unit.

219

Lee and Hayes

The four load/store instructions are load, store, load
address low, and load address high. In these instructions,
the ALU field of the microinstruction is replaced by an
unsigned 16-bit number (offset) embedded in the low 16
bits of the instruction word. There is no need for an ALU

field in a load/store instruction; instead, when a
load/store is executed, addition is performed on R1 and
the unsigned offset by definition. For the load/store in­
structions, the result of this addition becomes the ad­
dress of the data to be transferred; for the load address
low and load address high instructions, the result of the
addition itself is the data. The operation of these instruc­
tions can be summarized as follows:

Load: the contents of the memory location (R1 +
offset) - R2

Store: the contents of R2 - the memory location
(R1 + offset)

Load address low: R1 + offset - R2
Load address high: R1 + (2 16 x offset) - R2

Although it seems that only a single addressing mode,
register indirect plus offset, is provided, other useful
modes are obtained by choosing appropriate R1 and off­
set fields: setting the offset to zero produces a register
indirect mode, and setting R 1 to the zero register allows
absolute addressing within the low 64K words of address
space.

The load address instructions are "degenerate" loads
in that an address is computed but no data are fetched.
Instead, the address (the result of the addition of R1 and
the offset) is saved in R2. The load address high instruc­
tion is similar to the load address low, except that the
offset is shifted left 16 bits before being added to Rl.
The primary use for these two instructions is to allow
literal values to be placed on the stack. Literals are num­
bers that are "hard-coded" into a program; for exam­
ple, in the statementy = x + 5,5 is a literal. Sixteen-bit
literals can be pushed on the stack with a single load
address low instruction by setting R 1 to the zero regis­
ter and placing the desired 16-bit literal in the offset field
of the instruction word. Any 32-bit literal can be ob­
tained by load address high followed by a load address
low.

The first seven examples in Table 1 show uses of the
SC32 load/store instruction category. The first two ex­
amples are implementations of @ (load) and ! (store).
The next shows the fetch of a variable named "avaria­
ble" at address 327. Since the compiler knows this ad­
dress at compile time, there is no reason not to bring
it in line as a literal and combine it with the @ that fol­
lows. The next examples show that indexing into an ar­
ray or fetching a member of a record structure can be
managed similarly. The load address low instruction al­
lows small literals in the range 0 to 65,535 to be placed
on the stack in one cycle, as shown by pushing the liter­
al "1234" on the stack. Most literals found in programs
are within this range. Larger literals, like the number
"FEDCBA98" in Table 1, can be built in two cycles.
The peephole optimizer handles all of these situations.

The last eight examples in Table 1 show how some
representative Forth primitives are implemented with the

220

SC32 microinstruction. The final entry illustrates how
multiple Forth primitives can be packed into one SC32

instruction. The Forth over primitive gets the second on
stack and pushes it on top of the stack. The 0 < primi­
tive checks the top of the stack (now a copy of the for­
mer second on stack) and replaces it with a flag (- 1
if the top of the stack is negative). Our processor can
perform all these operations using one instruction: sec­
ond on stack is selected as the input to the ALU (R1
field); the N (negative) ALU condition is selected to be
loaded in the FL; and the flag field of the instruction
word is set to force the FL, rather than the ALU result,
to be placed on the B-bus. The parameter stack is
pushed, creating a new top of the stack location. Since
top of the stack is selected as the destination register (R2
field), FL is placed on the top of the stack. Thus, the
effect of over 0 < is achieved in one instruction.

INSTRUCTION EXECUTION
Almost all SC32 instructions are fetched and executed

in two cycles (see Fig. 4). Because the next instruction
is fetched while the current instruction is being execut­
ed, the net throughput is one instruction per cycle. Load
and store instructions require an extra cycle to execute,
since accessing memory prevents an instruction fetch.
The first cycle, which is identical to the normal execute
cycle, is used to compute an address, while the extra cy­
cle actually does the loading or storing.

Each cycle consists of two phases, A and B. In the
first phase, the operands are fetched from registers and
placed in the ALU input latches. Concurrently, the ad­
dress of the next instruction is sent to external memory.
In the second phase, the ALU operates and the results
are sent to the destination register. The new instruction
is received and latched.

The two-phase execution is transparent to the pro­
grammer except when pushing or popping the stacks,
which is not done until the second phase. So an instruc­
tion that references second on stack in the R1 field, pops
the parameter stack, and references the top of the stack
in the R2 field is referencing the same physical register
in both phases (see the definition of + in the previous
section).

STACK CACHING
A stack-caching algorithm implemented in the SC32

gives the programmer the illusion of arbitrarily large on­
chip stacks. Since the instruction set allows access to the
top four elements of either stack at any time, and since
a store instruction can pop a stack and then write out
the fourth element down, the algorithm must guarantee
that the top five stack elements are always present. The
aim is to minimize the number of times the cache over­
flows or underflows.

We have observed that the stacks of running Forth
programs stay near a certain depth for long periods of
time while many small oscillations of depth occur. The
caching algorithm, using the on-chip registers as a win­
dow into the stack, attempts to adjust the window so
that it is centered on the average depth.

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

A Forth Language Directed Processor Using VLSI Circuitry

Table 1. Implementation of some typical Forth operations in the SC32 instruction set.

Operation

Load (replace memory address in
TOS with memory address
contents)

Store register contents at
memory address in TOS

Load the contents of "avariable"

Load an element of "anarray"

Load the 9th element of a record

Push literal "1234" on stack

Push literal "FEDCBA98" on
stack

Duplicate the top of stack
element

Copy the SOS on the top of
stack

Move the top of RS to top of PS

Move the top of PS to top of RS

Increment the top of stack

Add the top two numbers on
stack

Test the top of stack for zero

Check the SOS for negative

Forth code

@

avariable @

over anarray + @

dup 9 + @

1234

FEDCBA98

dup

over

R>

>R

1+

+

0=

over 0<

SC32 instruction

ALU op. --destination

contents (TOS + 0) --TOS

TOS --address (TOS + 0)
nop

contents (zero + 327)--TOS

contents (SOS + 1234)--TOS

contents (TOS + 9) --TOS

zero + 1234--TOS

zero + FEDCOOO--TOS
TOS + BA98--TOS

nop SOS--TOS

nop SOS --TOS

nop TOR--TOS

nop TOS--TOR

TOS + I--TOS

TOS + SOS--TOS

nop TOS; ALU cond Z--TOS

nop SOS; ALU cond N --TOS

Stack operation

none

Pop PS
Pop PS

Push PS

Push PS

Push PS

Push PS

Push PS
None

Push PS

Push PS

Pop RS/Push PS

Push RS/Pop PS

None

Pop PS

None

Push PS

Notes: TOS = top of the stack; PS = parameter stack; SOS second on stack; RS = return stack.

The registers are used as a circular buffer (Fig. 5). Two
sliding points mark the overflow and underflow posi­
tions of the buffer. A push causes the stack pointer to
increment. If the stack pointer reaches the overflow
mark, the register at the bottom of the window (one past
the new stack pointer) must be pushed onto an external
stack. The processor inserts two cycles to write the reg­
ister out to external memory and to adjust the overflow
marker. In the first cycle, a VDR pointing to an exter­
nal overflow area is decremented, and the over­
flow/underflow markers are slid one register clockwise.
In the second cycle, the register one past the stack pointer
is written to the overflow area. On the first cycle of un­
derflow, a value is read from the overflow area into the
register four positions below the stack pointer, and the

fohn s Hopkins APL Technical Digesc, Volume 10, Number 3 (/989)

markers are slid one position counterclockwise. On the
second cycle, the pointer in the UDR is incremented. UDRO

is dedicated to the return stack and VDRI to the param­
eter stack.

A cache enable bit, the stack pointers, and overflow
markers are available in the processor status word. The
cache enable bit is cleared on reset, but the stack pointers
and markers must be initialized by the programmer. The
underflow marks are always 12 registers below the over­
flow marks. Figure 5 shows the configuration of the
cache after a typical initialization.

EXTERNAL INTERFACE
An external reset causes the processor to fetch and

execute an instruction from memory location o. A good

221

Lee and Hayes

Instruction

Instruction

Load/store
instruction

Instruction

Instruction

cpA cpB

I f f

o

r aw

f f r aw

f f
load/

r a store

f f r aw
L...--

f f r awJ

234 5 6 7
Clock cycles ~

Figure 4. Instruction fetch and execution timing for microcode
and load/store instructions. f = fetch instruction, r = read reg­
ister, a = ALU operate, w = write register.

Stack
Underflow pointer

Overflow

Overflow
stack

1

t
Increasing
addresses

Figure 5. An initialized stack cache. UDR
register.

user-defined

instruction to place there is a subroutine call to the start­
ing point of an initialization program. The reset clears
the cache enable and the interrupt enable bits.

The SC32 has a single interrupt request pin. An inter­
rupt response occurs when an interrupt request is asserted
and interrupts are enabled. The interrupt response is
similar to the reset response except that memory loca­
tion 1 is used. In addition, an interrupt acknowledge (IN­

TACK) signal is asserted by the processor. A system
designer may choose to use this signal so that the inter­
rupting device, instead of the memory system, delivers
the interrupt vector. The interrupt enable bit is avail­
able to the programmer via the processor status word.

The SC32 also has a direct memory access request pin.
When an external device requests direct memory access,
the processor tristates the address, data, and read pins
and asserts a direct memory access acknowledge signal.
The external device controls the bus until it releases the
request.

DISCUSSION
The SC32 was designed and implemented in six

months, a short period that limited the number of fea-

222

tures that could be addressed and constrained the com­
plexity of the design. Architectural features with proven
utility were borrowed from our past design efforts and
from current practice in conventional processor design.
When neither history nor analysis showed a clear-cut ad­
vantage for one decision over another, the simpler ap­
proach was usually chosen.

Measurements made during the design of the Forth
Reduced Instruction Set Computer 1 (FRISC 1) showed
that subroutine call and return were the most frequent­
ly executed operations in Forth programs. 2 The design
of FRISC 1 and 2 concentrated on a fast subroutine call
and easy implementation of Forth's stack and arithmetic
primitives. FRISC'S 1 and 2 have two instruction formats:
a subroutine call and a user-defined microcode instruc­
tion. The most significant bit of the instruction deter­
mines its type. A zero indicates that the remaining 31
bits are the address of subroutine to call, which executes
in one cycle. A one indicates that the following 31 bits
are a microcode word that directly controls the resources
of the processor's data path. The FRISC 1 and 2 micro­
code instruction can represent most Forth primitives, and
the data path can execute most primitives in a single cy­
cle, although primitives that must access memory, in­
cluding branches, loads, stores, and literals, take two
cycles.

The Forth instruction frequency measurements made
during the design of FRISC 1 showed that, after calls and
returns, the most common instructions were loads,
stores, and literals. These results are more in line with
what is observed in conventional programming lan­
guages. 5 Consequently, we were able to borrow ideas
for the SC32 design from many other processor designs
for which those issues have already been studied. In par­
ticular, our single register-indirect-plus-offset address
mode is found in most RISC'S.6,7 This addressing mode
covers the most common array and record structure ac­
cess operations. Register indirect addressing and abso­
lute addressing (using. the zero register, another common
RISC feature) are simply special cases of the one address­
ing mode. More complex, less frequently used address­
ing modes can be built using multiple instructions. 8 The
SC32'S register-indirect-plus-offset load and store instruc­
tions capture many Forth programming idioms in addi­
tion to Forth's traditional @ and!. Given the . load
instruction, it was relatively easy to design a load ad­
dress instruction, allowing the most common literal
values to be introduced into the data path in one cycle.

Other SC32 instruction enhancements are a single-cycle
branch and a conditional add instruction. The condi­
tional add can be used to construct a multiply step with
two cycles per bit or a divide step with three cycles per
bit.

Another improvement is the "next" field in the in­
struction word, which selects the source of the address
of the next instruction. Usually, "next" specifies the pro­
gram counter, but the top of the return stack can also
be used. Thus, as with the Novix NC4016 microproces­
sor,9 concurrent execution of an instruction and a
subroutine return is possible. The peephole optimizer
written for our compiler examines the primitive preced-

Johns Hopkins A PL Technical Digest, Volume 10, Number 3 (1989)

ing each return and frequently can combine return oper­
ations with the preceding primitive. Applying the
optimizer to a large (12,OOO-line) Forth program result­
ed in the elimination of about 25% of the returns. The
peephole optimizer also eliminates returns by convert­
ing call-return pairs into a branch. On the same pro­
gram, about 50070 of the returns were removed in this
way for a total of about 75070 of all returns being elimi­
nated and a 5% to 10% improvement in execution speed.

Other RISC processors commonly use a technique
called pipelining to improve their overall throughput.
Pipelining is to processor execution as a "round" (e.g.,
Row, Row, Row Your Boat) is to singing. In a pipe­
lined system, each instruction may require several stages
(and clock cycles) to execute. A new instruction is in­
troduced into the pipeline each clock cycle so that when
one instruction is in the first stage of execution, the
preceding instruction is in the second stage. Once the
first instruction completes all the execution stages, each
subsequent clock cycle completes the execution of an­
other instruction. Unfortunately, if a branch instruction
is executed, the pipeline must be emptied and refilled
with instructions at the branch destination. This is known
as a pipeline stall.

Deep pipelines (many stages) are common in RISC

processors designed to execute conventional program­
ming languages. Much effort has gone into developing
hardware and software techniques that avoid the pipe­
line stalls caused by branch instructions. 10 They typical­
ly involve a delayed branch instruction and a compiler
that can fill the delay slots. This issue would be even
more critical in a pipelined Forth processor. An exami­
nation of typical Forth programs indicated that the con­
trol flow was changed (via calls, returns, or branches)
very often, about once every three or four instruc­
tions. 2 It was not obvious how effective a compiler
would be at filling all the delay slots, and we decided
on a shallow pipeline and a simple compiler. Thus, the
SC32 has no pipeline other than the overlap of instruc­
tion fetch and execution.

One of the most important aspects of the design of
a Forth processor chip is the management of the stacks.
All three FRISC'S have used stack caching. FRISC 1 and
2 used a naive cache management algorithm with cache
overflow and underflow serviced by high-priority inter­
rupt routines. A much improved algorithm has been im­
plemented in hardware in the SC32.

Our stack caches are not true caches, because a value
held on the chip is not a copy of a value in memory.
Instead, they "buffer" the top of the stacks on the chip.
In this respect, they differ from the stack caches used
on the AT&T Bell Lab's CRISP machine. ll Our stack
buffers are more closely related to the register-window
schemes used in some RISC processors. 12 Register­
window machines buffer recent procedure invocation
frames, whereas we buffer individual registers.

The two key design parameters of a stack cache are
its size and the number of registers written on overflow
and read on underflow. To choose the number of
registers moved on overflow/underflow, we studied stack
caches of 8, 16, and 32 registers. The number of registers

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

A Forth Language Directed Processor Using VLSI Circuitry

moved on overflow/underflow was varied from one to
the size of the cache minus five. (Since our instruction
set allows the top five elements to be referenced within
an instruction, they must always be in the stack cache.)
Each stack cache configuration was simulated, using
stack depth traces obtained for seven Forth programs:

Flower: a graphics program drawing a complex geomet­
ric figure

Meta: the (meta) compilation of a new Forth system
Neural: a back propagation neural network simulation

learning xor
Traps: a 50-rule expert system for spacecraft trajectory

preprocessing
Huff: Huffman encodes a text file
Fib: recursively computes the 24th Fibonacci number
Acker: recursive Ackerman's function

The performance of each cache configuration was ex­
tremely sensitive to initial stack depth, so the depth was
varied over the possible range. The worst-case behavior
was used to characterize each configuration.

The simulations measured overflows/underflows per
primitive executed, a quantity that is independent of im­
plementation. We want to know the percentage of cy­
cles spent on cache management (the overhead), given
a particular implementation, so cost models of differ­
ent implementations were applied to the simulation
results in a post-processing phase. For example, Figure
6 shows the overhead in a 16-register parameter stack
cache; it was assumed that each primitive executes in one
cycle, but that each overflow/underflow stalls the pro­
cessor for two cycles. The results strongly indicate that
writing one register on overflow and reading one regis­
ter on underflow minimizes cache management over­
head. The results for the return stack and for 8- and
32-register caches were similar. In fact, the one-register
conclusion held for all implementations that we studied!

100

10

Z • Acker
'0 • Flower "' Q)

o Meta .L:
CD

~ Neural o 0.1
• Traps
C Fib

0.01)(Huff

~ Mean

0.001 L----L.._---L-_.l.....----L.._--'--_.l.....----L.._--'--_.l.....---'

1 2 3 4 5 6 7 8 9 10 11

Number of registers written/read

Figure 6. Stack-caching overhead versus number of registers
written or read.

223

Lee and Hayes

The top of stack cache described here was analytical­
ly modeled by Hasagawa and Shigei. 13 Their analysis
assumed that the stack depth follows a random walk and
predicts that the number of cache overflows and under­
flows will be minimized by writing out half of the
registers on overflow. The cache overflow and under­
flow behavior revealed by our study is quite different
from that predicted by a random-walk model. Cache
overflow is minimized by writing one register. Appar­
ently, the top of stack movement is more patterned than
a random walk. This is 'quite reasonable. For example,
consider that the variations in stack depth occurring
within a program loop are repeated each time through
the loop. Small oscillations about a particular depth are
produced for long periods. Since repetition is what com­
puters do best, we should expect stack depth to exhibit
such patterned oscillations.

These results convinced us to implement a one-register
overflow /underflow algorithm in hardware in the SC32.

In Figure 6, the leftmost set of points (one register writ­
ten/read) predicts the overhead that should be seen in
the SC32'S parameter stack cache. The overhead is un­
der 1070 for all the benchmarks except acker. The stack
depths for this recursive function vary chaotically. This
atypical Forth program was run to bring out the worst
possible behavior of the stack-caching algorithm, but the
overhead reached only 10% in each stack, for a total
of 20%.

The choice of stack size is influenced by two conflict­
ing demands: minimizing stack overflow /underflow
overhead by having a large cache, and minimizing con­
text switching times by having a small cache. The stack
traces described above were used again to study the ef­
fect of intermittent context switches on stack-cache man­
agement. A "context switch" was introduced at inter­
vals of 1000, 10,000, and 100,000 primitives. Context
switching is done by pushing a stack 15 times, letting
the overflow mechanism write out the cache contents,
and then popping the stack 15 times, letting the under­
flow mechanism load in a new context. No "cost" was
assigned to the switch itself, but the effect of the switches
on the number of overflows and underflows per primi­
tive was calculated. Figure 7 shows the cache-manage­
ment overhead in the parameter stack with context
switching (assuming a one-register move on over­
flow/underflow) versus the cache size. Each point rep­
resents the geometric mean of the overhead of all seven
benchmarks. The curve labeled "infinity" is the no­
context switching case shown for comparison. As expect­
ed the overflow/underflow overhead decreases with
lar'ger caches and increases with more context switch­
ing. Beyond a certain point, larger caches offer diminish­
ing returns. We concluded that a 32-register cache is best
but that 16 works almost as well when context switch­
ing is considered.

Some features were deliberately excluded from the
SC3~ design. Its intended application is advanced embed­
ded systems. Memory-management facilities typically are
not needed in embedded systems and their support is not
provided. Byte addressing is not supported, and memo­
ry is addressed as only 32-bit words. Providing only word

224

100~~--~-------r--------------~

1K

10K

100K

Infinity

0,001 L-L-_-L-___ -----1. ________ ---'

8 16 32 64 128

Cache size

Figure 7. Stack-caching overhead versus cache size with con­
text switching.

addressing simplifies the instruction set and lets the pro­
cessor run faster by avoiding the need for byte position­
ing multiplexers. 14 Finally, the SC32 has no floating
point support; it was beyond the scope of what could
be accomplished in six months.

RESULTS
The SC32 architecture has been implemented in a

34,OOO-transistor 2-l-'m complementary metal-oxide semi­
conductor chip. The chip features that use the largest
number of transistors are the stack caches (about 40%
of all transistors), ALU and ALU condition logic (about
20%), stack-cache management (about 10070), .and in­
struction decode and control (about 10%). The mternal
cycle time of the chip was dictated by the speed of the
ALU plus a subsequent ALU condition code being load­
ed into a register. The processor needs 35- to 55-ns ex­
ternal memories to run at 10 MHz.

The prototype chips were fabricated by United Sili­
con Structures, which has a Direct E-beam Write On
Wafer process. The new technology is especially ap­
propriate for fabricating prototype chips. Since the sili­
con surface is patterned directly with an electron beam,
no masks need to be made. Eliminating the mask -making
step saves money and results in a faster design turn­
around. We contracted the company to guarantee that
we receive 15 working parts. A number of foundries are
willing to satisfy this guarantee for designs created on
the Genesil silicon compiler. Chips from the first fabri­
cation run are fully functional and work at 10 MHz.
The part is packaged in an 84-pin pin grid array and
consumes 650 m W.

REFERENCES

I Ritter, T., and Walker, G., " Varieties of Threaded Code for Language Im­
plementation," BYTE 5, W6-227 (1980).

2Fraeman, M. E., Hayes, J . R., Williams, R. L., and Zaremba, T., "A 32
Bit Architecture for Direct Execution of Forth," in Proc. Eighth FORML
Con! (1986).

3 Hayes, J . R., "An Interpreter and Object Code Optimizer for a 32 Bit Forth
Chip," in Proc. Eighth FORML Con! (1986) .

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

4 Williams, R. L., Fraeman, M. E., Hayes, J . R., and Zaremba, T. , "The De­
velopment of a VLSI Forth Microprocessor," in Proc. Eighth FORML Con!
(1986).

5 Katevenis, M. G. H., Reduced Instruction Set Computer Architectures for
VLSI, MIT Press, Cambridge (1985).

6Hennessy, J., Jouppi, H., Baskett, F., Gross, T., Rowen, c., et al., "The
MIPS Machine," in Proc. Compeon (1982).

7 Patterson, D. A., "Reduced Instruction Set Computers," Comm. ACM 28,
8-21 (1985).

8 Chow, F., Correll, S., Himmelstein, M., Killian, E., and Weber, L., "How
Many Addressing Modes Are Enough?" in Proc. 2nd International Con! on
Architectural Support for Programming Languages and Operating Systems
(1987).

9 Golden, J., Moore, C. H., and Brodie, L., "Fast Processor Chip Takes Its
Instructions Directly from Forth," Electron. Des., 127- 138 (21 Mar 1985).

10 McFarling, S., and Hennessy, J., "Reducing the Cost of Branches," in Proc.
13th International Symp. on Computer Architecture (1986).

II Ditzel, D. R., McLellan, H. R., and Berenbaurn, A. D., "Design Tradeoffs

THE AUTHORS

SUSAN C. LEE was born in San
Diego in 1952. She received a B.S.
in physics from Duke University in
1973 and joined APL the same year.
In 1978 she received an M.S. in com­
puter science from The Johns Hop­
kins University G . W . C. Whiting
School of Engineering. She received
an M .S. in technology management
from the G. W. C. Whiting School
of Engineering in 1987.

At APL, Mrs. Lee has worked in
the Space Department on the SAS­
C, TIP, AMPTE, and TOPEX satel­
lites. She also worked in the Subma­
rine Technology Magnetics Group
on several at-sea exercises. Her pri-

mary work area is software systems engineering.

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

A Forth Language Directed Processor Using VLSI Circuitry

to Support the C Programming Language in the CRISP Microprocessor," in
Proc. 2nd International Con! on Architectural Support for Programming Lan­
guages and Operating Systems (1987).

12 Tarnir, Y., and Sequin, C. H., "Strategies for Managing the Register File in
RISC," IEEE Trans. Comput. C-32, 977-989 (1983).

13 Hasagawa, M., and Shigei, Y., "High-Speed Top-of-Stack Scheme for VLSI
Processor: A Management Algorithm and Its Analysis," in Proc. 12th Inter­
national Symp. on Computer Architecture, pp. 48-54 (1985).

14 Hennessy, J., Jouppi, H., Baskett, F., Gross, T., and Gill, J., "Hard­
ware/ Software Tradeoffs for Increased Performance," in Proc. Symp. on Ar­
chitectural Support for Programming Languages and Operating Systems (1982).

ACKNOWLEDGMENTS-This design drew heavily on ideas from earlier
FRISC designs. Therefore, the contributions of Martin E. Fraeman, Robert L.
Williams, and Thomas Zaremba are acknowledged here. Finally, we would like
to thank the farsighted members of APL's Computer Architecture Thrust Panel
and IR&D Committee for supporting this work. The work was done under Navy
contract N<XXB9-87-C-5301.

JOHN R. HAYES was born in
Washington, D.C., in 1960. He re­
ceived a B.S. degree in electrical en­
gineering from the Virginia Poly­
technic Institute and State Univer­
sity in 1982 and an M.S. degree in
computer science from The Johns
Hopkins University in 1986. After
joining the Computer Engineering
Group of APL'S Technical Services
Department in 1982, he wrote flight
software for satellite-based magne­
tometer experiments and for the
Hopkins Ultraviolet Telescope. He
spent several years designing Forth
language-directed microprocessors
culminating in the SC32. Mr. Hayes

is currently applying the SC32 to ground support equipment for the TOP­
EX and SALT radar altimeters. Other research interests include com­
puter architecture and programming language design and construction.

225

